A Survey of the Behavior of the Hydroxybisphosphonic Function in Crystallized Acids, Metallic Salts, and Some Related Compounds

J.-P. Silvestre,¹ Nguyen Quy Dao,¹ and Y. Leroux²

¹Laboratoire Structures, Propriétés et Modélisation des Solides (SPMS), UMR 8580 du CNRS, Ecole Centrale Paris, Grande Voie des Vignes, F92295 Châtenay-Malabry Cedex, France

²Laboratoire de Chimie Structurale Biomoléculaire, UPRESA 7031 du CNRS, Université Paris Nord, 74 rue Marcel Cachin, F93017 Bobigny Cedex, France

Received 14 December 2000

ABSTRACT: The flexibility and the different degrees of ionization of the hydroxybisphosphonic function provide numerous possibilities for the complexation of metallic and organic cations to molecules possessing these functions. The properties of this class of compounds are very interesting for different industrial and medical applications. They depend in a large part on the nature of the hydrocarbonated chain substituted to CH_3 in hydroxyethylidenebisphosphonic acid and of the number and the position of the bisphosphonic groups grafted on this chain. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:73–89, 2001

INTRODUCTION

The crystal structure of the hydroxyethylidenebisphosphonic acid (HEBP) monohydrate $H_3C-C(OH)(PO_3H_2)_2 \cdot H_2O$ was the first solved concerning this class of compounds [1]. This molecule is shown in Figures 1 and 2. The hydroxybisphosphonic function $-C(OH)(PO_3H_2)_2$ is a tetraacid with only one strong acidity.

Alone in an infinitely diluted medium, the HEBP

FIGURE 1 The molecule of hydroxyethylidenebisphosphonic acid with the chosen standardization for the atom names. (In the case of other compounds the hydrogen atoms eventually linked to O1 and O6 are named respectively H1 and H6).

Correspondence to: J.-P. Silvestre.

^{© 2001} John Wiley & Sons, Inc.

FIGURE 2 View of the molecule of hydroxyethylidenebisphosphonic acid showing the shifting between the two phosphonate groups: orthogonal projection perpendicular to the plane of the figure along the P1 (upper)–P2 (lower) axis.

molecule presents many free rotations. This is the case of each PO₃H₂ group and CH₃ and H atoms of the P–OH group. In these conditions, this molecule would show a symmetry plane defined by O7–C1–C2. In the crystallized state, all these free rotations are locked by intermolecular hydrogen bonds or involving water molecules or by the complexation of cations in salts with loss of the symmetry plane. So, because of its numerous possibilities of ionization and its flexibility of conformation, the HEBP function is able to give a great variety of complexes. We have classified these compounds in three groups: (1) the hydroxyethylidene bisphosphonic acid and its metallic salts, (2) the different bisphosphonated acids and complex salts, and (3) the tetraphosphonate salts.

This article presents the compilation of crystal structure data to show the behavior of the hydroxybisphosphonic function in the crystallized state.

For further comparison and discussion, the atoms of the hydroxybisphosphonic function were renamed for all the compounds found in the literature following the convention used in Figures 1 and 2.

CRYSTAL STRUCTURE SYMMETRY AND UNIT CELL PARAMETERS

Tables 1–3 give the space group and unit cell parameters and volume for all compounds available in the literature; among them 44 nonisostructural structures are listed. All the compounds, except 24, 25, and 28 (i.e., <7%) crystallize in centrosymmetric groups with generally a low symmetry group; 27.3%

in triclinic *P*1 (space group 2); 52.3% in monoclinic space group 14 ($P2_1/c$, $P2_1/n$, $P2_1/a$). Only four compounds (2 and 15, Table 1; 24 and 28, Table 2) crystallize in orthorhombic space groups, respectively: *Pcab* (space group 61), *Pbca* (s.g. n°61), *Pca2*₁ (space group 29) and *Pna2*₁ (space group 33). The volume occupied by the ligand HEBP is about 200 Å³, and after considering the volume of cations, water molecules, esterification groups, and substitution of the CH₃ group, it can be observed that the compacity is nearly the same for all the compounds.

THE P-O AND C-O BONDS

Tables 4–6 give the P–O and C–O distances for each compound with averages for each PO₃ group (columns 12 and 13), for the two PO_3 groups together (column 14), and for all the P-O and C-O bonds (column 15). For P-OH groups the P-O lengths are generally greater than 1.55 Å. It is not possible to distinguish P=O from $P-O^-$ bonds: they generally have lengths less than 1.51 Å. When the hydrogen atom is shared between two P–O or one P–O and one water molecule, the P-O length is generally about 1.52-1.53 Å. Whatever their number, the influence of hydrogen bonds received or involved cation coordinence bonds is not systematic: it is not significant from one compound to another and even also in a same compound. Thus two anomalies can be observed for the compound 21 (Table 5), which presents an inversion of the P-O bond lengths: P-O bonds carrying an H atom are shorter than P-O bonds without an H atom, and the C–OH group is ionized by loss of the hydrogen atom. On the other hand, the P–O length average in PO₃ groups is very similar for all the compounds (1.526 Å), and a compensation can be frequently observed between the two PO₃ groups and sometimes even with the C–O length of the C-OH group as it can be seen with the different calculated average values.

Then again these averages are not dependent on the ionization degree of the PO_3H_2 groups or on their esterification.

At last we can observe that they are the oxygen atoms O3 and O6 which are the most frequently carriers of an H atom, particularly in the case of the HEBP acid and its metallic salts. This is globally true whatever the ionization degree of the hydroxybisphosphonic group. So, for the 40 compounds that are not isomorphous or esterified, the 119 remaining hydrogen atoms are distributed as follows:

26.9% on P1–O3, 21.0% on P2–O6, 14.7% on P2– O4 and P1–O2, 12.2% on P2–O5 and 10.5% on P1–O1. This is a consequence of the volume oc-

No.	Compound	Space Group 2	Ζ	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	V(ų)	Ref.
1a	(LH ₄).H ₂ O	P2./c	4	7.011(3)	17.613(7)	7.143(3)		108.57(7)		836.2	[1]
1b*	$(LH_4).H_2O$	P_2/c	4	6.981(3)	17.55(3)	7,107(9)		108.6(1)		825.2	[2.22]
2a	Na(LH ₂).H ₂ O	Pcab 8	8	18.773(3)	11.834(4)	7.500(3)				1666(2)	[3.23]
2b	Na(LH ₂).H ₂ O	Pbca 8	8	7.499(3)	11.830(5)	18.779(6)				1666	[4]
3	Na ₂ (LH ₂).4H ₂ O	P2./c	4	10.598(4)	5.993(2)	18.262(6)		91.77(1)		1159.34	เว่า
4	K(LH ₂).2H ₂ O	$P\bar{1}$ 2	2	7.499(1)	11.015(2)	6.679(3)	101.92(3)	109.92(3)	78.03(1)	501.8	[6]
5	$NH_{4}(LH_{2}).2H_{2}O$	$P\bar{l}$ 2	2	7.562(1)	11.156(1)	6.668(2)	99.78(2)	109.08(2)	79.65(1)	519.2	[6]
6a	Rb(LH ₂).2H ₂ Ô	$P\bar{l}$ 2	2	6.627(5)	7.592(5)	11.066(3)	79.82(4)	80.69(4)	71.24(5)	516(5)	[7]
6b	Rb(LH ₃).2H ₂ O	$P\bar{l}$ 2	2	7.602(3)	11.066(3)	6.627(4)	99.29(5)	108.84(5)	79.79(5)	516.0 [`] ́	[8]
bc*	Rb(LH ₂).2H ₂ O	$P\bar{l}$ 2	2	6.623(7)	7.597(7)	11.053(10)	79.78(8)	80.69(8)	71.17(8)	514.7	[9]
7	Cs(LH ₃).2H ₂ O	$P\bar{l}$ 2	2	7.729(1)	11.125(2)	6.587(3)	95.89(3)	107.59(3)	81.56(1)	533.0	[8]
8	Ca(LH ₂).2H ₂ O	$P\bar{l}$ 2	2	6.961(3)	8.085(4)	9.729(4)	106.26(7)	106.08(7)	60.33(5)	450.4	[10]
9	Sr(LH ₂) ₂ .4H ₂ O	C2/c 4	4	18.411(9)	12.769(6)	8.323(5)	()	100.72(6)	()	1922(25)	[11,23]
10a	Cd(LH ₂).2H ₂ O	P2,/n 4	4	14.229(3)	5.613(1)	11.521(3)		93.06(1)		918.8(4)	[12]
10b	Hg(LH ₂).2H ₂ O	P2 /n 4	4	14.346(4)	5.692(2)	11.621(4)		95.17(2)		945(1)	[12]
11	PĎ(LH ₂).H ₂ Ô	P2 /c 4	4	10.896(6)	8.297(5)	10.317(6)		109.82(6)		877(2)	[13.22]
12	$Y(LH_2)(LH_2)$	P2,/n 4	4	10.451(2)	11.395(3)	17.173(3)		94.28(1)		2039.5(7)	[14,15]
	5.5H ₂ Ő			()		()		. ,		()	
13	Ho(LH ₃)(LH ₂)	$P2_1/n$	4	10.447(2)	11.382(2)	17.129(4)		94.32(3)		2031.1(7)	[15]
	5.5H ₂ O					()		()		()	
14a	Er(LĤ ₃)(LH ₂)	$P2_1/n$	4	10.432(1)	11.398(2)	17.134(2)		94.35(2)		2031.6(5)	[15]
	5.5H ₂ Ő					()		()		()	
14b	$Er(LH_3)(LH_2)$	$P2_1/n$	4	10.434(2)	11.407(4)	17.163(4)		94.33(2)		2036.9	[16]
	5.5H ₂ Ő			()	()	()		()			
15	Gd(LH).3H₂O	Pbca 8	8	9.7125(5)	9.741(1)	20.53(3)				1942.5(3)	[17]
16	Cu ₃ (LH) ₂ .6H ₂ O	PĪ	1	9.891(3)	8.784(̀3)́	6.221(2)	103.24(2)	98.94(2)	106.26(2)	494.93`́	[18,24]
17	K ₃ Na ₂ Cu(L) ₂ 12H ₂ O	PĪ 2	2	11.951(3)	6.220(1)	11.789(2)	113.17(1)	108.94(2)	97.56(1)	727.4	[19]

TABLE 1 HEBP Acid and Metallic Complexes: Unit Cell Parameters

Estimated standard deviations in parenthesis. $L = [(H_3C)(OH)C(PO_3)_2]^{4-}.$

Compounds 1b* and 6c*, crystal structures solved by neutron diffraction.

cupied by the hydrophobic methyl group or its substitutings.

Table 7 retails the distribution of the hydrogen atoms for each ionization degree.

CONFORMATION OF THE HYDROXYBISPHOSPHONATE FUNCTION (TABLES 8–10 AND FIGURE 2)

From one compound to an another, the P1–C1–P2 angles are similar with a 10% deviation at most. The highest and smallest values are respectively 106.3(2)° (compound 45, Table 9) and 116.0(8)° (compound 36, Table 9) with a general average of 111.7° (111°42′), not far from the theoretical value (109°28′) of the valence angle in sp³ hybridization of the carbon atom.

The relative displacement between the two PO_3 groups of the hydroxybisphosphonic function (Figure 2) can be measured by the pseudo-torsion angles P1–O1/P2–O4, P1–O2/P2–O5 and P1–O3/P2–O6. Generally these three angles have the same direction of rotation, which depends only on the choice of the

asymmetric unit. So, a negative sign is only given when one angle has a direction of rotation opposite to the other two or if these directions are different between two HEBP functions, which exist in the same asymmetric unit (examples: compounds 1, 12-14 [Table 8], 22 and 45, [Table 9]). The values of these angles correspond to a not far from eclipsed conformation for a great majority of compounds. Only the compounds 24, 31, 37, 48, and perhaps also 32 present a rather staggered configuration. So the distribution of the values of the pseudo-torsion angles is very large: from $0.1(3)^{\circ}$ (compound 21, Table 9) to 58.3(5)° (compound 37, Table 9). These angles depend on the cation complexation mode and of the hydrogen bonds given or received by the oxygen atoms.

CATION COMPLEXATION MODE: TABLES 11–13

The hydroxybisphosphonate groups can complex the cations in four different ways: (1) by a monodentate bond involving an oxygen atom of one of the two PO_3

No.	Compound	Space Group	Ζ	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ (°)	<i>V(Å</i> ³)	Ref.
18 19 20	EDA(LH ₃) 2A3MP(LH ₃).H ₂ O (2A4MP) ₂ (LH _{3.5})(LH _{2.5})	P2 ₁ /c Pl P2 ₁ /c	4 2 4	6.867(1) 8.083(2) 7.3400(8)	11.665(2) 12.595(9) 21.200(5)	10.977(2) 7.174(3) 18.807(2)	106.24(6)	101.66(9) 92.40(4) 93.96(1)	87.15(5)	861.2(2) 700.1(6) 2919.6(6)	[20] [21] [21]
21 22	$(NH_4)_6MO_6O_{17}(LH)_2.10H_2O$ $(NH_4)_3MOO_2(LH_2)$ $(LH)_6.75H_0$	P <u>2</u> ₁/c PĪ	4 2	8.636(2) 9.215(1)	31.255(4) 9.383(1)	16.619(5) 15.470(3)	101.43(1)	96.82(2) 97.70(1)	99.01(1)	4454 1298(2)	[25] [26]
23	Na ₄ (NH ₄)MoO ₂ (H)(L) ₂	C2/c	4	11.980(4)	13.876(3)	19.410(6)		106.03(2)		3101	[27]
24 25 26 27 28 29	$\begin{array}{l} \text{ISH}_2\text{O} \\ \text{H}(\text{NH})(\text{CH}_3)_2(\text{HMBP}).\text{H}_2\text{O} \\ (\text{OH})(\text{NH}_3)(\text{CH}_2)_2(\text{HMBP}) \\ (\text{NH}_3)(\text{CH}_2)_3(\text{LH}_3) \\ (\text{NH}_3)(\text{CH}_2)_5(\text{LH}_3) \\ (\text{NH}_3)(\text{CH}_2)_5(\text{LH}_3).\text{H}_2\text{O} \\ \text{Zn}[(\text{NH}_3)(\text{CH}_2)_3(\text{LH}_2)]_2.2\text{HO} \end{array}$	Pca2 ₁ P2 ₁ P2 ₁ /n P2 ₁ /c Pna2 ₁ P2 ₁ /c	4 2 4 4 8 4	12.839(3) 6.626(1) 10.503(3) 6.960(2) 12.002(9) 12.589(5)	7.290(2) 9.971(1) 10.952(3) 13.127(5) 13.778(8) 13.582(4)	10.142(2) 6.924(1) 8.028(2) 12.056(3) 14.131(22) 12.447(6)		110.56(1) 98.55(3) 95.89(2) 110.0(1)		949.2(6) 428.3(2) 913.18 1095.6(6) 2336.8 1999.9	[28] [28] [29] [30] [31] [31]
30	Cd[(NH ₃)(CH ₂) ₃ (LH)].H ₂ O	P2 ₁ /n	4	12.478(5)	14.581(4)	5.765(14)		98.1(1)		1038.4	[32]
31	$[(H_3C)O(H)(CH_3)]$	PĪ	2	11.404(3)	10.426(3)	6.199(5)	92.07(1)	95.90(1)	110.45(1)	684.89	[32] [31]
32	$[(CH_3)(CH_2)_3(LH_3)]$ $(NH_3)(CH_2)_3(LH_{3.5})_2.2H_2O$	P2 ₁ /n	8	14.808(4)	10.342(3)	13.494(4)		98.95(2)		2041.4	[33]
33	(L)(CH ₃) ₄	PĪ	2	8.915(3)	8.786(3)	8.226(3)	116.02(2)	95.78(2)	87.63(2)	576.06	[24]
34	$(C_6H_5)(L)(CH_3)_4$	P2 ₁ /n	4	14.743(4)	8.494(2)	12.318(3)		104.35(2)		1494.4	[24]
35	$(C_6H_5)(L)(CH_2C_6H_5)_4$	P2 ₁ /c	4	14.427(2)	27.941(2)	8.246(2)		107.0(1)		3178.8	[35]
36 37 38	$(CH_3)(L)(CH_2C_6H_5)_4$ NH ₃ (CH ₂) ₅ (LH ₃) Betaine bis(dihydroxyphos- phinoyl)-2,2 $N(2',3',4'-H)$	P21/c P21/n P21/n	4 8 4	10.968(7) 10.160(4) 11.538(3)	8.766(3) 21.347(5) 11.168(5)	29.681(11) 10.700(3) 9.440(4)		103.1(1) 95.25(2) 91.59(2)		2778.9 2310.9 1215.9	[36] [36] [37] [37]
39	pyrolyl) pyrrolidin Cu[(NH ₃ (CH ₂) ₃ (LH ₂) ₂] ₂	P2 ₁ /c	4	12.622(4)	13.524(4)	12.521(3)		110.82(6)		1997.8	[37]
40	$Cu_{1/2}[(NH_3(CH_2)_5(LH_2)_2]$	P2 ₁ /n	4	7.396(3)	13.189(3)	13.822(3)		102.89(5)		1314.3	[37]
41 42	$[H_2N(CH_2CH_3)_2]_2Cu(LH_2)_22H_2O$ $[H_2N(CH_2CH_3)_2]_2Co(LH_2)_2$ $[H_2N(CH_2CH_3)_2]_2Co(LH_2)_2$	P2₁/c P2₁/c	2 2	7.495(3) 7.359(1)	11.473(4) 11.586(2)	14.947(7) 15.130(3)		96.81(4) 96.18(1)		1276(2) 1282.5(7)	[39] [39]
43	$[H_2N(CH_2CH_3)_2]_2Mg(LH_2)_2$	P2 ₁ /c	4	7.360(1)	11.583(2)	15.135(3)		96.16(3)		1282.4(4)	[40]
44	$[H_2N(CH_2CH_3)_2]_2Zn(LH_2)_2$	<i>P</i> 2 ₁ /c	4	7.366(1)	11.577(2)	15.115(2)		96.22(2)		1281.4(3)	[40]
45 46	Cu(LH ₂)(bipyridil).4H ₂ O NaCu(LH ₂)CI.3H ₂ O	PĪ P2₁/c	2 4	8.309(2) 12.219(4)	10.362(2) 8.608(2)	10.811(2) 12.427(3)	91.53(1)	90.57(2) 115.87(3)	93.43(1)	928.74 1176(1)	[16] [41]

Estimated standard deviations in parentheses.

EDA, ethylenediammonium, 2A3MP, 2-amino 3-methyl pyridinium, 2A4MP, 2-amino 4-methyl pyridinium, L, [(H₃C)(OH)C(PO₃)₂]⁴⁻.

groups, never the oxygen atom of the C–OH group; (2) by a bidentate bond given by one oxygen atom from each PO₃ group, never from the same PO₃ group or from a PO₃ and C–OH group; (3) by a tridentate bond given only by one oxygen atom from each PO₃ group and from the C–OH group; and (4) by a tetradentate bond; this case is exceptional and concerns exclusively the compound **17** (Table 11)

 $K_4Na_2Cu[(H_3C)(OH)C(PO_3)_2]_2 \cdot 12H_2O$: for one of the potassium atoms the four bonds are given by two oxygen atoms of each PO₃ group.

For the different cations under investigation, all these possibilities can coexist, and the cation coordination can be completed or not by water molecules. The cation coordination polyhedra can be independent or linked together by sharing summits,

No.	Compound	Space Group	Ζ	a(Å)	b(Å)	c(Å)	α(°)	β(°)	γ(°)	V(ų)	Ref.
47 48 49 50 51 52 53	$(H_3O)_2(DHHTP)2H_2O$ $Na_2(DHHTP).4H_2O$ $K_2(DHHTP).2H_2O$ $Cu(DHHTP).10H_2O$ $[(H)O(CH_2)_2]_2(DHOTP).2H_2O$ $Ca(DHOTP).6.8H_2O$ $Cu_2(DHOTP).12H_2O$	C2/c P2,/a C2/c PI PI PI C2/c	4 2 1 1 4	19.935(3) 10.472(2) 19.914(5) 9.820(5) 10.052(10) 11.168(5) 31.956(2)	9.925(2) 10.645(4) 9.813(3) 7.636(4) 9.336(9) 11.032(6) 6.034(9)	10.195(3) 9.160(2) 10.046(2) 9.543(2) 8.282(12) 5.138(7) 18.510(3)	109.00(1) 98.4(1) 91.9(1)	108.51(2) 92.12(2) 107.83(2) 113.09(1) 104.9(1) 91.0(1) 128.6(1)	76.39(1) 106.6(1) 91.4(1)	1912.8(7) 1024.9(5) 1872.5(7) 617(1) 699.82 632.37 2789.9	[42] [43] [42] [44] [31] [31] [31]

TABLE 3 Bis-HEBP Complexes (DHHTP and DHOTP): Unit Cell Parameters

Estimated standard deviations in parentheses. DHHTP, 1,6-dihydroxyhexylidene-1,1,6,6-tetraphosphonate; DHOTP, 1,8-dihydroxyoctilidene-1,1,8,8-tetraphosphonate.

edges, faces, or alternatively summit and edge forming mono-, bi- or tridimensional chainings. The polyhedra can also be associated two by two following independent bipolyhedra (compounds **47–49**, Table 13). The possibilities are very diverse, and there is no rule involving the nature of the cation.

WATER MOLECULE

The water molecules take a prominent part in the cohesion of the crystal structures. All the compounds crystallize with water molecules, sometimes with a great number, except compounds 18, 25–27, 31, 33– 38 (Table 2). Various kinds of water molecules can be distinguished and coexist in a crystal structure: (1) water molecules taking part in the cation coordination; (2) water molecules connecting the ligands following varying manners by bridges involving one or two H₂O and even three with starry arrangement (compounds 12-14, Table 1); (3) statistical water molecules with a random distribution on different uncompletely occupied crystallographic sites; and (4) exceptionally a water molecule can play the role of a cation by ionization as H_3O^+ (compound 47, Table 13).

All these water molecules are involved as donors of two hydrogen bonds and acceptors of zero, one or two hydrogen bonds. We can consider that the last two sorts of water molecules play the role of genuine cement between the bisphosphonated ligands.

NETWORK OF HYDROGEN BONDS

The hydrogen bonds that are given by the remaining hydrogen atoms on the phosphonate groups, the C–

OH group and the water molecules give very complex and various networks. In a large part of the compounds they alone ensure the tridimensional cohesion of the structure. Unfortunately the atomic position of the hydrogen atoms are generally not well determined by X-ray diffraction, particularly when these atoms seem to be exactly shared between two oxygen atoms of PO₃ groups of two ligands related by a centre of symmetry. Only two structures were solved by neutron diffraction (compounds 1b and 6c) and these studies show clearly that such bonds are not symmetric and not perfectly linear with the hydrogen atom nearer one of the two involved oxygen atoms. It would be very interesting also to solve other ambiguities concerning for example the case of the hydrogen atoms of NH₂ or NH₃ groups which seem to give hydrogen bonds towards P-O groups or two H₂O groups or one P–O and one H₂O group (examples: compounds 32, 37–40, Table 5).

CONCLUSION

The present article sums up according to the literature some characteristics of the behavior of the hydroxybisphosphonic function as can be observed in the structural studies of its salts and other related compounds. It is noteworthy that the oxidation states, the conformation possibilities, and the various networks of hydrogen bonds can greatly change depending on the substitutions, the nature of the complexing cations, and the role of the water molecules. Some of the derivated compounds with this hydroxybisphosphonic function have been therefore successfully applied in different industrial applications, and in the medical field [50–57].

vith Indication of the Involving of O Atom in Cation Coordinence Bonds, Hydrogen	
ngths (Å)	
D Bond Le	
and C-(
: P-O	
mplexes	smc
allic Co	ng O Atc
and Met	-Carryi
Acid a	drogen
HEBP	d of Hy
-Е 4	s, an

TABL Bonds	E 4 HEF , and of F	BP Acid Hydroger	and Met -Carryir	tallic Compl ng O Atoms	lexes: P–O a	and C-O Bo	and Lengths (Å) with Indica	ation of the	Involving of	f O Atom ir	ר Cation C	coordinenc	ce Bonds, Hydi	rogen
Com- pound No.	l Cation	Anion	No. of H ₂ O	P1-01	P1-02	P1-03	P2-04	P2-05	P2-06	C1-07	Average P1–0	Average P2–0	Average P_0	Average P-O + C-O	Ref.
1 a		0	-	1.507(3)	1.537(2)	1.559(3)	1.550(3)	1.541(2)	1.505(2)	1.440(4)	1.534	1.532	1.533	1.520	[5]
1 b*		0	~	R3R4 1.496(2)	H 1.534(2)	H 1.554(2)	H 1.546(2)	H w 1.534(2)	R2R7 1.486(2)	H w 1.426(1)	1.528	1.525	1.527	1.512	[2]
2a 2a	Na	$LH_{3^{-}}$	-	R3R4 1.483(4)	H 1.533(2)	H 1.553(2)	H 1.589(2)	H w 1.520(2)	R2R7 1.501(3)	H w 1.435(6)	1.523	1.530	1.527	1.513	[22] [3]
2b	Na	LH ³⁻	~	Cw 1.488(2)	H CR5 1.527(4)	H w 1.551(4)	H C 1.559(4)	C 1.514(4)	R3R7 1.508(2)	H 1.441(3) 	1.522	1.527	1.525	1.513	[23] [4]
e	2Na	LH_{2}^{2-}	4	CW 1.508	н СК5 1.584	Н w 1.499	н с 1.511 с	C 1.503	КЗК/ 1.576	Н 1.444 С	1.530	1.530	1.530	1.518	[2]
4	¥	LH ₃ -	2	CR2 1.487(3)	H C 1.527(3)	www 1.571(3)	Cww 1.492(3)	C 1.528(3)	H w 1.565(4)	H C 1.448(3)	1.528	1.528	1.528	1.517	[9]
5	NH_4	LH3	2	ww 1.487(2)	h5 CCR5 1.530(2)	H w 1.576(2)	CR3 1.493(2)	h2 C 1.520(2)	H C 1.562(2)	H CC 1.441(3)	1.531	1.525	1.528	1.516	[9]
6a	Rb	LH ₃ -	2	ww 1.487(3)	h5 R5n 1.530(3)	H w 1.571(4)	Rn 1.492(3)	h2 R 1.528(3)	H n 1.554(3)	H nn 1.458(5)	1.529	1.525	1.527	1.517	[2]
(RX) 6b	Rb	LH ₃ -	2	ww 1.479(6)	h5 CCR5 1.524(5)	H w 1.575(6)	CR3 1.493(6)	h2 C 1.529(5)	H C 1.555(5)	H CC 1.441(9)	1.526	1.526	1.526	1.514	[8]
(RX) 6c*	Rb	LH3-	2	ww 1.483(3)	h5 CCR5 1.521(2)	H w 1.573(3)	CR3 1.487(3)	h2 C 1.527(2)	H C 1.558(3)	H CC 1.431(2)	1.526	1.524	1.525	1.511	[6]
N) N	Cs	LH3-	2	ww 1.495(3)	h5 CCR5 1.517(3)	H w 1.583(3)	CR3 1.497(3)	h2 C 1.541(3)	H C 1.559(3)	H CC 1.438(4)	1.532	1.532	1.532	1.518	[8]
œ	Ca	$LH^{2^{-}}_{2^{-}}$	2	Cww 1.549(3)	h5 CCR5 1.507(3)	H w 1.530(3)	CCR3 1.595(3)	h2 CCC 1.496(4)	H C 1.505(4)	H CC 1.457(5)	1.529	1.532	1.530	1.520	[10]
6	ي د	$2 \ LH_3^-$	4	H R1w 1.500(5)	Cw 1.485(5)	H R3w 1.548(6)	H w 1.556(5)	C 1.494(5)	CC 1.543(5)	H C 1.440(9)	1.511	1.531	1.521	1.509	[11]
10	Cd	LH2-	2	R3w 1.510(3)	CCR4 1.522(3)	H 1.552(3)	H 1.503(3)	CCCC 1.511(3)	H w 1.567(3)	H CC 1.453(4)	1.522	1.527	1.528	1.517	[23] [12]
7	(Hg) Pb ²⁺	LH_{2}^{2-}	-	Cw 1.507(2)	CC 1.506(5)	H 1.570(5)	Cw 1.499(5)	Cw 1.513(5)	H w 1.581(5)	H C 1.450(8)	1.528	1.531	1.529	1.518	[22] [13]
12	≻	LH ₃ -	5.5	CR7 1.496(3)	CC 1.556(3)	H 1.528(3)	Cw 1.509(3)	CC 1.494(3)	H 1.553(3)	H w 1.444(5)	1.527	1.519	1.523	1.511	[22] [14]
		LH2-		CR7 ² 1.509(3) CR7 ¹	H w* 1.512(3) Cw	H 1.558(3) H w*	Cw 1.503(3) C	1.513(3) C	H w*w* 1.558(3) H	H 1.450(5) H	1.526	1.525	1.526	1.515	[15]
				::>	;)	:)	,	_	-					

TABLE 4 (continued) HEBP Acid and Metallic Complexes: P–O and C–O Bond Lengths (Å) with Indication of the Involving of O Atom in Cation Coordinence Bonds, Hydrogen Bonds, and of Hydrogen-Carrying O Atoms

200		20, 20, 20			2000										
Com- pounc No.	Cation	Anion	No. of H ₂ O	P1-01	P1-02	P1-03	P2-04	P2-05	P2-06	C1-07	Average P1–0	Average P2–0	Average P–0	Average P-0 + C-0	Ref.
13	Р	LH3-	5.5	1.500(3)	1.551(3)	1.539(3)	1.506(3)	1.485(3) 	1.553(3)	1.430(5)	1.530	1.515	1.522	1.509	[15]
		LH_2^{2-}		CR72 1.504(3)	Н w [*] 1.515(3)	H 1.555(3)	۲.500(3) ۲.500(3)	ບ 1.503(3) ດິ	Н w*w* 1.560(3)	Н 1.440(5)	1.525	1.521	1.523	1.511	
14a	Еr	LH3-	5.5	1.495(3)	لاللال 1.553(3)	н w 1.540(3)	ں 1.507(3) کین	ں 1.489(3) م	н 1.556(3) Н	н 1.429(5)	1.529	1.517	1.523	1.510	[15]
		LH_2^{2-}		1.508(3)	н w 1.507(3)	п 1.558(3)	لال 1.501(3)	ر 1.507(3)	п w w 1.559(3)	п 1.443(5)	1.524	1.522	1.523	1.512	
14b	ц	LH_3^-	5.5	1.502(4)	1.560(4)	н w 1.543(4)	ں 1.513(4)	ں 1.495(4)	п 1.557(4)	н 1.442(6) 	1.535	1.522	1.528	1.516	[16]
		LH_{2}^{2-}		CR7 ² 1.511(4)	Н 1.511(4)	H 1.561(4)	Cw 1.504(4)	C 1.500(4)	Н 1.563(4)	H w 1.445(6)	1.528	1.522	1.525	1.514	
15	Gd	LH ³⁻	с	CR7 ¹ 1.557(6)	Cw 1.516(6)	H w* 1.508(6)	C 1.495(6)	C 1.497(6)	Н 1.581(7) Ц	H w 1.449(10)	1.527	1.524	1.526	1.515	[17]
16	3Cu ²⁺	LH ^{3 –}	9	1.530(8)	1.522(9)	1.494(7)	1.510(8)	1.505(9)	1.544(10)	1.471(14)	1.515	1.520	1.518	1.511	[18]
17		- 4 -	12	1.509(3)	1.537(2)	1.513(3)	1.522(3)	1.547(2)	1.512(3)	1.453(5)	1.520	1.527	1.523	1.513	[19]
	K1,K2			§0.	C1,C1	≥£.	200	C1,C1	C &						
	Cu^{2+}			C	00	ر	ر	20		00					
Estima 1 b * an hydrog bond fr by a ra given b	ted stands d 6c *, cry: en atom sl om the P- ndom watr y an amm	ard devia stal struc hared be -07–H gr er moleci onium gr	tions in F stures so tween th roup of th ule or a r roup; C,	barentheses. Ived by neutro le oxygen atorr ne first ligand; normal water n cation coordine	n diffraction; l s of two P–O R7², hydroger nolecule but s ence bond (C	$L = [(H_2C)($ groups; R, I n bond from shared betw 1 or C2 whe	DH)C(PO ₃) ₂] ⁴ Nydrogen bon the P–O7–H een two rece in a cation oc	; H, hydrogen <i>a</i> dd given by a PC group of the se iver P–O–H gro cupies two crys	ttom totally lin H group, and cond ligand; v ups or sharec tallographic s	ked to the oxy, the number foll v, hydrogen bo I between one f ites).	gen atom o lowing R in nd given by ∽O−H gro	f the corres dicates the l a water mo up and anot	ponding P- POH donor blecule; w*, ther water r	–O or C–O group group; R7', hydr hydrogen bond (molecule; n, hydr	os; h, ogen jiven ogen

vith Indication of the Involving of O Atom in Cation Coordinence	
Å) wi	
D Bond Lengths (/	
Ŭ	
and	
9	
5 Other Varied Bisphosphonated Acids and Complexes: F	Hydrogen Bonds, and of Hydrogen-Carrying O Atoms
TABLE	Bonds, I

5			Callyllig C All	2112									
		P1-01	P1-02	P1-03	P2-04	P2-05	P2-06	C1-07	Aver-	Aver-	Aver-	4 <i>verage</i> ₽_0 ⊥	
No.	Compound								P1-0	P2-0	P-0	- 0 - 0 - 0	Ref.
18	EDA(LH ₃)	1.538(2) u	1.547(2) L	1.505(2) DED7	1.509(1) D25	1.550(2) L	1.522(1) D15	1.448(2) L	1.530	1.527	1.529	1.517	[20]
19	2A3MP(LH ₃).H2O	1.494(2)	1.538(2)	1.547(2)	1.513(2)	1.563(2)	1.491(2)	1.452(3)	1.526	1.522	1.524	1.514	[21]
20	(2A4MP) ₂ (LH _{3.5})(LH _{2.5}) 1:	1.517(2)	1.532(2)	п 1.532(2) ь	1.565(2)	1.497(2)	1.523(2)	1.440(3)	1.527	1.528	1.528	1.515	[21]
	3⊓₂O 2:	1.505(2) 1.505(2)	п 1.537(2) b r11 _{n1}	п го 1.529(2) Н	п 1.553(2) Н	R4⁺n 1.499(2) ₽⊿¹n	1.517(2)	п 1.439(3) Н	1.524	1.523	1.523	1.511	
3	(NH ₄) ₆ Mo ₆ O ₁₇ (LH) ₂ 1:	1.529(6)	1.542(9)	1.518(9) H nn	1.510(8)	1.550(9)	1.494(9) H wn	1.46(1)	1.530	1.518	1.524	1.515	[25]
	2:	1.516(7)	1.557(8)	1.509(7)	1.522(7)	1.548 CC	1.508 U	1.46(1)	1.527	1.526	1.527	1.517	
22	(NH ₄) ₃ MoO ₂ (LH ₂) 1:	1.555(4)	1.524(4)	1.505(4)	1.498(4)	1.555(4)	1.509(4)	1.442(7)	1.528	1.521	1.524	1.513	[26]
	(LH).6.75H ₂ O 2:	н 1.547(5)	1.532(4)	nnn 1.498(4)	1.496(5)	н С 1.566(4)	nw 1.507(4)	н 1.453(7)	1.526	1.523	1.524	1.514	
23	Na ₄ (NH ₄)[MoO ₂ (H)(L) ₂].	Н 1.514(7)	CK/W 1.541(6)	nnn 1.518(6)	n 1.497(6)	C 1.573(7)	nww 1.508(6)	н 1.46(1) Ц	1.524	1.526	1.525	1.516	[27]
24	(H)(CH ₃) ₂ N[HC(PO ₃ H ₂)	ل 1.491(3)	1.505(3)	m 1.577(3)	1.496(3)	1.547(3)	ww 1.522(3)	د =	1.524	1.522	1.523		[28]
25	(PO ₃ H)].H ₂ O (NH ₃)(CH ₂) ₂ (LH ₃)	nw 1.507(1)	R6 1.506(2)	H n 1.572(1)	R3w 1.483(2)	H R 1.550(2)	H 1.555(2)	1.441(2)	1.528	1.529	1.529	1.516	[28]
26	$(NH_3)(CH_2)_3(LH_3)$	R5n 1.481(3)	R6R7 1.530(3)	H n 1.552(3)	R3 1.494(3)	H 1.561(3)	Н 1.511(<u>3)</u>	H n 1.438(4)	1.521	1.522	1.522	1.510	[29]
27	$(NH_3)(CH_2)_5(LH_3)$	R5n 1.500(2)	Н 1.575(2) 	Н 1.502(2) 	R3R7n 1.545(3)	Н 1.493(2) Д.	R2n 1.558(2)	H n 1.436(3)	1.526	1.532	1.529	1.516	[30]
28	(NH ₃)(CH ₂) ₅ (LH ₃).H ₂ O 1:	1.473(1)	H n° 1.544(1)	1.551(4)	Н 1.487(1)	1.564(1)	н 1.499 <u>(3)</u>	H n [°] 1.455(2)	1.523	1.517	1.520	1.510	[31]
	2:	1.455(1)	Н 1.559(1)	H n*n* 1.523(2)	R5²n [∞] 1.483(1)	Н 1.561(2) ,	K3n ² 1.565(4)	Н 1.406(2)	1.512	1.540	1.526	1.509	
29	Zn[(NH ₃)(CH ₂) ₃ (LH ₂)] ₂ 1:	1.508(6)	н n° 1.496(6)	1.565(3)	1.558(6)	Н W 1.508(6) СР735	Н n ⁻ 1.506(6)	н n ⁻ 1.445(10)	1.523	1.524	1.524	1.512	[31]
	2: 2:	1.506(6)	1.525(6)	1.564(7)	1.596(7)	1.481(6)	1.525(6)	1.375(11)	1.532	1.534	1.533	1.510	22
30	Cd[(NH ₃)(CH ₂) ₃ (LH)].H ₂ O	1.501(9)	1.544(7)	1.528(7)	п 1.496(б) С*	را 1.516(8) ریس	1.523(7)	1.443(11)	1.524	1.512	1.518	1.507	[31]
31		1.557(3)	1.484(3)	1.546(3)	1.498(3)	1.504(3)	1.573(3)	1.442(4)	1.529	1.525	1.527	1.515	31]
32	(NH ₃)(CH ₂) ₃ (LH _{3.5}) ₂ 1: (NH ₃)(CH ₂) ₃ (LH _{3.5}) ₂ 1: 2H O	п 1.523(2) ⊔ Р22м*	1.513(2) 1.513(2)	п 1.552(2) ⊔	1.548(2)	1.503(2) D42n*	1.508(3)	1.438(4)	1.529	1.520	1.525	1.512	[33]
	2: 2:	1.510(2) R5w*	1.527(2) h R1 ¹	п 1.523(3) Н	н w 1.537(2) Н w*	1.553(2) H n	1.490(3) wn	H 1.448(4)	1.517	1.527	1.523	1.513	[74]

Lengths (Å) with Indication of the Involving of O Atom in Cation	
plexes: P-O and C-O Bone	ns
d Bisphosphonated Acids and Comp	s, and of Hydrogen-Carrying O Ator
) Other Varied	Hydrogen Bond
TABLE 5 (continued)	Coordinence Bonds, h

)	>									
		P1-01	P1-02	P1-03	P2-04	P2-05	P2-06	C1-07	Aver-	Aver-	Aver-	Average P_O ⊥	
No.	Compound								P1-0	P2-0	P_0		Ref.
33	(L)(CH ₃) ₄	1.573(3)	1.568(3)	1.456(3)	1.556(2)	1.566(3)	1.470(3) D7	1.437(4) u	1.532	1.531	1.532	1.518	[34]
34	$(C_6H_5)(L)(CH_3)_4$	1.550(3)	1.571(3)	1.460(3) D7	1.446(3)	1.566(3)	ъл 1.572(3)	п 1.426(4) Ц	1.527	1.528	1.528	1.513	[24] [34]
35	$(C_6H_5)(L)(CH_2C_6H_5)_4$	1.563(2)	1.466(2) D7	1.566(2)	1.565(2)	1.458(3)	1.568(2)	1.441(4)	1.532	1.530	1.531	1.518	[35] [35]
36	$(CH_{3})(L)(CH_{2}C_{6}H_{5})_{4}$	1.561(12)	1.464(12)	1.549(14)	1.588(12)	1.432(13)	1.532(14)	1.435(21)	1.525	1.517	1.521	1.509	[36]
37	NH ₃ (CH ₂) ₅ (LH ₃) 1:	1.589(8) H	1.489(8) R52n ^{2*}	1.511(7) R1R32	1.513(8) R7 ² n*n ^{2*}	1.560(8) H	1.552(8) H R6 ²	1.463(13) H	1.530	1.542	1.536	1.525	[37]
	2:	1.466(8) R7 ¹ n	1.555(8) H n ^{1*}	1.578(9) H	1.478(8) R510 ^{1*}	1.540(8)	1.569(8) H R6 ¹	1.408(13) H	1.533	1.529	1.531	1.513	
38	Betaine bis(dihydroxyphosphinoyle)- 2,2N(2',3',4'-H pyrolyle)	1.523(4) h n*	1.535(4) H	1.499(4) R6	1.516(4) h	1.508(4) R2n*	1.542(4) H		1.519	1.522	1.521	I	[37]
39	Cu ₂ [(NH ₃ (CH ₂) ₃ (LH ₂) ₂]4 1:	1.506(6) PAr3w	1.498(6) Cn*	1.560(5) H	1.571(6) H n*	1.508(6)	1.502(6)	1.432(9) H	1.521	1.527	1.524	1.511	[37] [38]
	4 ⁻² C	1.504(6) Cn*	1.502(6) CR4R71	1.537(6) H n*	1.560(6) H n*	1.503(6) C	1.503(6) R3n*ww	1.465(10) H n*	1.514	1.522	1.518	1.511	00
40	Cu _{1/2} [(NH ₃ (CH ₂) ₅ (LH ₂) ₂] 2H ₂ O	1.478(7) R4w	1.500(7) CC BZDW*W**	1.568(6) H n*	1.568(7) H w	1.498(7) CCw*w*	1.517(7) R3n	1.437(11) H	1.515	1.528	1.522	1.509	[37] [38]
41	[H ₂ N(CH ₂ CH ₃) ₂] ₂ Cu(LH ₂) ₂	1.500(5) R4w	1.517(5)	1.559(5) H	1.569(5) H	1.514(5) Cn*	1.505(5) R3n	1.453(8) H	1.525	1.529	1.527	1.517	[39]
42	[H ₂ N(CH ₂ CH ₃) ₂] ₂ Co(LH ₂) ₂ 2H O	1.505(2) R4w	1.510(2)	1.561(2) H	1.572(2) H	1.510(2)	1.509(2) R3n	1.448(3) H	1.525	1.530	1.528	1.516	[39]
43	[H ₂ N(CH ₂ CH ₃) ₂] ₂ Mg(LH ₂) ₂	1.508(1)	1.509(1)	1.561(2) H	1.574(1) H	1.511(1)	1.508(1) P3n	1.456(2) H	1.526	1.531	1.529	1.518	[40]
44	[H ₂ N(CH ₂ CH ₃) ₂] ₂ Zn(LH ₂) ₂ .	1.505(2) R4W	1.508(2)	1.560(2) H	1.572(2) H	1.510(2)	1.508(2) R3n	1.447(3) H	1.524	1.530	1.527	1.516	[40]
45	Cu(LH ₂)(bipyridil).4H ₂ O	1.570(2) H	1.514(2)	1.492(2)	1.567(2) H	1.508(2)	1.505(2) PAW	1.447(3) H	1.525	1.527	1.526	1.515	[16]
46	NaCu(LH ₂)CI.3H ₂ O	1.513(3) CC	1.509(3) CC	1.567(3) H	1.515(3) CC	1.518(3) CR3	1.559(3) H w	1.457(4) H	1.526	1.531	1.529	1.518	[41]
Esti EDA follo inclu n* w crys	mated standard deviations in pare v, ethylenediammonium; 2A3MP, ; le corresponding P–O or C–O gro wing number indicates the P–O–H ides two ligands which are crystal then this bond is shared betweer tallographically independent); w, r P–O–H group and another water r	itheses. -amino 3-meth ups; h, hydroge I donor group) ographically in- two P-O-H g ydrogen bond g	yl pyridinium; 2 in atom shared R¹ and R², the dependent; o*, groups (an expo given by a wate	A4MP, 2-amir between two exponent indid shared hydrog onent precises r molecule; w'	the	inium; $L = [(H_3 - ydrogen bond a trogen bond is y an oxonium g given by the ot given by a rank$	C)(OH)C(PO ₃) ₂ given by a P–O given by a P–C given by a P–C roup (compoun her ligand whe dom water mole	H ^{4−} ; H, hydrc ⊢H group (<i>r</i>)-H group o (d 30); n, hyo n the crysta :cule or shar	ogen aton for a par f the othe drogen bc al structur ed betwe	n totally I tial or shi r HEBP and given e include en two P	inked to ared hyd ligand wl by an a es two lig O-H gr	the oxygen rogen bonc nen the stru mmonium g gands whic oups or be	atom d) (the ucture jroup; th are tween

Hydroxybisphosphonic Function in Crystallized Acids, Metallic Salts, and Some Related Compounds 81

TABLE 6 Bis-HEBP Complexes (DHHTP and DHOTP): P–O and C–O Bond Lengths (Å) with Indication of the Involving of O Atom in Cation Coordinence Bonds, Hydrogen Bonds, and of Hydrogen-Carrying O Atoms

Estimated standard deviations in parentheses. H, hydrogen atom totally linked to the oxygen atom of the corresponding P–O or C–O groups; h, hydrogen atom shared by the oxygen atoms of two P–O groups; R, hydrogen bond (r for partial or shared hydrogen bond) from a POH group (the number following R indicates the POH donor group); w, hydrogen bond given by a water molecule; w*, hydrogen bond given by a random water molecule or a normal water molecule but shared between two receiver P–O–H groups or shared between one P–O–H group and another water molecule; o*, shared hydrogen bond given by a random water molecule or a normal water molecule but shared between two receiver P–O–H groups or shared between one P–O–H group and another water molecule; o*, shared hydrogen bond given by an oxonium group; C, cation coordinence bond.

Ionization	P1-01	P1-02	P1–03	P2-04	P2-05	P2-06	Number of H Atoms
LH_3^-	7 11 1%	12 19.0%	14 22 2%	4.5 7.1%	10.5 16.7%	15 23.8%	63
LH_2^{2-}	3	2	11	8	1	6 19.4%	31
LH ³⁻	1 12 5%	0	2.5	0	0	4.5	8
LH, LH $^{0.5-}_{3.5}$, LH $^{1.5-}_{2.5}$	1.5	3.5	4.5	5	2	0.5	17
Total	12.5 10.5%	17.5 14.7%	32 26.9%	17.5 14.7%	13.5 11.3%	26 21.8%	119

 TABLE 7
 Distribution of the Hydrogen Atoms (Number and Percentage) on the P–OH Groups

TABLE 8 HEBP Acid and Metallic Complexes: P–C–P Angle (°) and Pseudo-Torsion Angles (°) between PO₃ Groups

No.	Compound	P1–C1–P2	P1-01:P2-04	P1-02:P2-05	P1-03:P2-06	Average Rotation	Ref.
1a	(LH₄) · H₂O	115.1(2)	3.2(1)	7.6(1)	-2.8(1)	2.7	[1]
1b*	(LH₄) · H₂O	114.50(6)	3.3(1)	7.4(1)	-2.6(1)	2.7	[2,22]
2a	Na(ĽH ₃) · H ₂ O	113.3(2)	15.0(2)	10.6(2)	39.2(2)	21.6	[3,23]
2b	Na(LH ₃)·H ₂ O	113.7(1)	15.1(2)	10.3(2)	40.2(2)	21.9	[4]
3	Na ₂ (LH ₂) · 4H ₂ O	113.9	13.5	7.1	4.9	8.5	[5]
4	$K(LH_3) \cdot 2H_2O$	113.5(2)	13.8(1)	14.9(1)	15.7(2)	14.8	[6]
5	$NH_4(LH_3) \cdot 2H_2O$	113.3(2)	13.2(1)	12.2(1)	18.6(2)	14.7	[6]
6a	$Rb(LH_3) \cdot 2H_2O$	113.0(1)	15.3(1)	13.6(1)	19.5(1)	16.1	[7]
6b	$Rb(LH_3) \cdot 2H_2O$	113.5(3)	15.6(1)	13.9(1)	19.5(1)	16.3	[8]
6c*	$Rb(LH_3) \cdot 2H_2O$	114.1(2)	15.4(1)	13.5(1)	19.5(1)	16.1	[9]
7	$Cs(LH_3) \cdot 2H_2O$	112.9(2)	18.5(3)	21.0(3)	16.4(2)	18.6	[8]
8	$Ca(LH_2) \cdot 2H_2O$	113.7(3)	20.8(1)	23.1(1)	31.2(2)	25.0	[10]
9	$Sr(LH_3)_2 \cdot 4H_2O$	113.3(3)	4.5(3)	6.4(3)	3.0(3)	4.6	[11,23]
10	$Cd(LH_2) \cdot 2H_2O$	110.5(2)	6.4(1)	9.9(1)	18.7(2)	11.7	[12,22]
11	$Pb(LH_2) \cdot H_2O$	114.2(4)	3.9(2)	3.6(3)	0.7(3)	2.7	[13,22]
12	$Y(LH_3)(LH_2) \cdot 5.5H_2O$						[15]
	LH_{3}^{-1}	111.3(2)	4.2(1)	1.4(1)	-3.1(1)	0.8	
	LH_2^{-2}	107.1(2)	0.6(1)	0.7(2)	-7.0(2)	1.9	
13	$Ho(LH_3)(LH_2) \cdot 5.5H_2O$						[15]
	LH_3^{-1}	111.1(2)	3.8(1)	0.8(1)	-3.3(1)	0.4	
	LH_2^{-2}	106.9(2)	0.5(1)	0.9(2)	-7.5(3)	2.0	
14a	$Er(LH_3)(LH_2) \cdot 5.5H_2O$						[15]
	LH_3^{-1}	110.4(2)	3.8(1)	1.2(1)	-3.4(1)	0.5	
	LH_2^{-2}	106.6(2)	0.8(1)	0.6(1)	-7.5(2)	2.0	
14b	$Er(LH_3)(LH_2) \cdot 5.5H_2O$						[16]
	LH_3^{-1}	110.6(3)	3.6(1)	1.0(1)	-3.0(1)	0.5	
	LH_2^{-2}	106.5(3)	0.5(1)	0.4(1)	-8.4(2)	2.5	
15	$Gd(LH) \cdot 3H_2O$	107.7(2)	17.4(3)	21.6(3)	36.8(4)	25.3	[17]
16	$Cu_3(LH)_2 \cdot 6H_2O$	107.9(6)	5.3	8.0	13.5	8.9	[18,24]
17	$K_4Na_2Cu(L)_2 \cdot 12H_2O$	111.4(2)	8.1(2)	8.5(1)	13.6(2)	10.1	[19]

Estimated standard deviations in parentheses. Compounds **1b**^{*} and **6c**^{*}, crystal structures solved by neutron diffraction; $L = [(H_3C)(OH)C(PO_3)_2]^{4-}$.

No.	Compound	P1–C1–P2	P1–01, P2–04	P1–02, P2–05	P1–03, P2–06	Average Rotation	Ref.
18 19 20	EDA(LH ₂) 2A3MP(LH ₃) · H ₂ O (2A4MP),(LH ₂ 5)(LH ₂ 5) · 3H ₂ O	115.8(1) 115.7(1)	19.1 6.0(1)	39.9 2.5(1)	21.9 11.9(1)	27.0 6.8	[20] [21] [21]
04	$\begin{array}{c} LH_{2.5}^{0.5-} \\ LH_{2.5}^{1.5-} \\ LH_{2.5}^{1.5-} \end{array}$	112.8(2) 112.8(2)	15.5 14.7	16.1 15.3	17.6 16.5	16.4 15.5	[05]
21	$(NH_4)_8 NIO_6 O_{17} (LH)_2 \cdot 10H_2 O_{17} O_{17} (LH)_2 \cdot 10H_2 O_{17} O_{1$	111.4(6)	1.5(4)	1.9(4)	2.0(6)	1.8	[25]
22	$(NH_4)_3MoO_2(LH_2)(LH) \cdot 6.75H_2O$	111.7(3) 111.5(3)	7.8(2) 6.9(3)	-1.5(3) 6.5(3)	-6.9 -3.5(5)	-0.2 3.3	[26]
23	$Na_4(NH_4)MoO_2(H)(L)_2 \cdot 15H_2O$	112.7(4)	12.5(3)	10.6(3)	15.6(4)	12.9	[27]
24	$(H)(CH_3)_2N[HC(PO_3H_2)(PO_3H)] \cdot H_2O$	113.4(8)	33.4(1)	43.9(1)	67.6(2)	48.3	[28]
25	$(NH_3)(CH_2)_2(LH_3)$	110.66(8)	25.4(1)	25.8(1)	33.1(1)	28.1	[28]
20 27	$(NH_3)(CH_2)_3(LH_3)$	113.5(2)	8.6(1)	0.3(1)	1.8(2)	3.0 27.4	[29]
28	$(NH_3)(CH_2)_5(CH_3)$ $(NH_2)(CH_2)_2(LH_3) \cdot H_2O$	112 1(1)	10.3(1)	14 6(1)	18.3(1)	14.4	[31]
	(1113)(0112)5(2113) 1120	110.9(1)	24.4(1)	28.5(1)	43.3(1)	32.1	[01]
29	Zn[(NH ₃)(CH ₂) ₃ (LH ₂)] ₂ · 2H ₂ O	110.3(4)	4.3(3)	0.8(3)	16.4(4)	7.2	[31,32]
		113.6(5)	17.7(3)	12.5(3)	42.0(4)	24.1	
30	$Cd[(NH_3)(CH_2)_3(LH)] \cdot H_2O$	108.8(6)	7.9(4)	9.3(3)	22.8(5)	13.3	[31,32]
31	$[(H_3C)O(H)(CH_3)][(CH_3)(CH_2)_3(LH_3)]$	108.4(2)	36.3(1)	39.6(1)	51.3(2)	42.4	[31]
32	$(NH_3)(CH_2)_3(LH_{3.5})_2 \cdot 2H_2O$	111.0(2)	26.2(1)	27.7(1)	53.0(2)	35.6	[33,24]
22		112.1(2)	23.9(1)	31.9(1)	46.4(2)	34.1	[04 04]
33		119.3(2)	5.4(1)	1.5(1)	7.0(2)	4.8	[34,24]
34	$(C_6 \Pi_5) L(C \Pi_3)_4$	111.7(2) 115.8(2)	22.4(1)	30.0(1) 15.2(1)	34.0(2) 27 $4(1)$	29.0	[35 36]
36	$(C_{6}^{-1}) [(C_{1}^{-1}) C_{6}^{-1}]_{4}$	116.0(2)	17 4(1)	18 9(1)	21.4(1) 31.3(1)	22.5	[36]
37	$(OH_3) \ge (OH_2O_6H_5)_4$ NH ₂ (CH ₂) ₂ (IH ₂)	111 7(6)	41 6(3)	47 0(3)	58 3(5)	49.0	[37]
•.	1113(0112)6(2113)	108.6(5)	28.6(4)	36.2(4)	54.6(5)	39.9	[01]
38	Betaine bis(dihydroxyphosphinoyle)-2,2	114.6(3)	0.1	2.2	1.3	1.2	[37]
30	$(2,3,4 - \Pi pyrolyle) pyroliallie$	110 0(4)	3.0	0.3	14.6	63	[37 38]
39	$Cu_2[(101_3(C1_2)_3(L1_2)_2]_4, 41_2O$	113.5(4)	15.6	11.2	38.1	21.6	[37,30]
40 41 42 43 44 45	$\begin{array}{l} Cu_{1/2}[(NH_3(CH_2)_6(LH_2)_2]\cdot 2H_2O\\ [H_2N(CH_2CH_3)_2]_2Cu(LH_2)_2\cdot 2H_2O\\ [H_2N(CH_2CH_3)_2]_2Co(LH_2)_2\cdot 2H_2O\\ [H_2N(CH_2CH_3)_2]_2Mg(LH_2)_2\cdot 2H_2O\\ [H_2N(CH_2CH_3)_2]_2Zn(LH_2)_2\cdot 2H_2O\\ [H_2N(CH_2CH_3)_2]_2Zn(LH_2)_2\cdot 2H_2O\\ NaCu(LH_2)CI\cdot 3H_2O\\ \end{array}$	110.3(5) 109.7(3) 111.9(1) 111.41(9) 111.7(1) 106.3(2)	0.2 8.5(2) 7.5(1) 7.0(1) 7.4(1) 2.1(1)	4.8 14.1(2) 12.5(1) 12.2(1) 12.7(1) 1.2(1)	15.0 13.6(2) 9.8(1) 9.8(1) 9.9(1) - 8.1(2)	6.7 12.1 9.9 9.7 10.0 - 1.6	[37,38] [39] [39] [40] [40] [16]
46	$(NH_3)(CH_2)_5(LH_3)\cdot H_2O$	112.1(1) 110.9(1)	10.3(1) 24.4(1)	14.6(1) 28.5(1)	18.3(1) 43.3(1)	14.4 32.1	[41]

TABLE 9 Other Various Bisphosphonated Acids and Complexes: P–C–P angle (°) and Pseudo-Torsion Angles (°) between PO_3 Groups

Estimated standard deviations in parentheses. EDA, ethylenediammonium; 2A3MP, 2-amino 3-methyl pyridinium; 2A4MP, 2-amino 4-methyl pyridinium; $L = [(H_3C)(OH)C(PO_3)_2]^+$.

TABLE 10	Bis-HEBP Complexe	s (DHHTP a	ind DHOTP):	P-C-P	angle (°)	and Pseudo-T	orsion Angle	es (°) betw	veen PO ₃
Groups	-						-		-

No.	Compound	P1–C1–P2	P1–01, P2–04	P1–02, P2–05	P1–03, P2–06	Average Rotation	Ref.
47	$\begin{array}{l} (H_3O)_2[(H_3O_6P_2)(OH)C(CH_2)_4C(OH)(P_2O_6H_3)]\cdot 2H_2O\\ Na_2[(H_3O_6P_2)(OH)C(CH_2)_4C(OH)(P_2O_6H_3)]\cdot 4H_2O\\ K_2[(H_3O_6P_2)(OH)C(CH_2)_4C(OH)(P_2O_6H_3)]\cdot 2H_2O\\ Cu[(H_3O_6P_2)(OH)C(CH_2)_4C(OH)(P_2O_6H_3)]\cdot 10H_2O\\ [(H)O(CH_2)_2]_2[(H_3O_6P_2)(OH)C(CH_2)_6C(OH)(P_2O_6H_3)]\cdot 4H_2O\\ Ca[(H_3O_6P_2)(OH)C(CH_2)_6C(OH)(P_2O_6H_3)]\cdot 6.8H_2O\\ Cu2[(H_2O_6P_2)(OH)C(CH_2)_6C(OH)(P_2O_6H_2)]\cdot 12H_2O\\ \end{array}$	111.3(1)	17.7(1)	23.7(1)	32.1(2)	24.5	[42]
48		108.3(2)	35.7(1)	32.3(1)	53.6(2)	40.5	[43]
49		111.4(1)	19.2(1)	25.8(1)	35.7(1)	26.9	[42]
50		110.4(3)	9.9(2)	10.7(2)	23.4(3)	14.7	[44]
51		111.2(6)	13.2(4)	14.9(4)	16.5(5)	14.9	[31]
52		111.7(4)	20.8(3)	24.5(2)	35.9(3)	27.1	[31]
53		110.7(4)	7.6(3)	14.0(3)	18.7(4)	13.4	[31]

Estimated standard deviations in parentheses.

 TABLE 11
 HEBP Metallic Complexes: Cation Coordinence with Extreme and Average Cation-Oxygen Distances (Å)

No.	Compound	Cation (M)	Coordinence of The Cation	Nature and Number of the Ligand-Cation Bondsª	Number of Coordinated H ₂ O	M–O Min.	M–O Max.	M-O average (all bonds)	Short Description of the Polyhedra Chaining	Ref.
2a 3 b	Na(LH ₃) · H ₂ O Na(LH ₃) · H ₂ O Na ₃ (LH ₃) · 4H ₃ O	Z Za+ Za+	ى ى ى	д в в В – Ц	v	2.300(4) 2.294(2) 2.302	2.471(4) 2.463(4) 2.857	2.395 2.393 2.471	Independent polyhedron Independent polyhedron Monodimensional chains by	[3,23] [4]
4		k Na+	6	В, Т 2М. В. Т	- c	2.303 2.701(3)	2.453 3.109(4)	2.348 2.879	alternation of shared edge and summit Monoclimensional chains	[5]
6a	Rb(LH ₃) · 2H ₂ O	Rb +	. ~	ст., с, т 2М, В, Т	0 0	2.887(3)	3.230(2)	3.030	by shared edge Monodimensional chains	[9]
6b	$Rb(LH_3) \cdot 2H_2O$	Rb^+	7	2M, B, T	0	2.889(6)	3.224(4)	3.028	by shared edge Monodimensional chains	
6c * ^b	$Rb(LH_3) \cdot 2H_2O$	Rb^+	7	2M, B, T	0	2.888(3)	3.226(2)	3.028	by shared edge Monodimensional chains	<u>0</u> 0
7	$Cs(LH_3) \cdot 2H_2O$	Cs^+	11	M, 2B, 2T	0	3.070(3)	3.678(3)	3.366	by shared edge Monodimensional chains	<u>6</u>
œ	$Ca(LH_2) \cdot 2H_2O$	Ca^{2+}	ω	B, T	ю	2.352(4)	2.608(3)	2.476	by snared edge Monodimensional chains	[0]
6	$Sr(LH_3)_2 \cdot 4H_2O$	Sr^{2+}	ω	2M, 2T	0	2.554(5)	2.678(5)	2.605	by snared edge Monodimensional chains	[01]
10	$Cd(LH_2) \cdot 2H_2O$	Cd^{2+}	9	М, В, Т	0	2.219(2)	2.508(3)	2.312	by snared edge Monodimensional chains	[11,23]
1	$Pb(LH_2) \cdot H_2O$	Pb^{2+}	Q	4M, B	0	2.343(5)	2.910(5)	2.851	by shared edge Monodimensional chains	[12]
12	λ(ΓΗ ³)(ΓΗ ²) · 2·2H ² O	, 43+	7	M, 3B	0	2.225(5)	2.910(5)	2.581	by snared edge Independent polyhedron	[13,22] [14,15]
13 14a	H0(LH ₃)(LH ₂) · 5.5H ₂ O H0(LH ₃)(LH ₂) · 5.5H ₂ O	Н0 ³⁺ ЕГ ³⁺	~ ~	M, 3B M, 3B	00	2.235(3) 2.226(3)	2.404(3) 2.401(3)	2.313 2.306	Independent polyhedron Independent polyhedron	[15] [15]
14b 15	Er(HEBP) ₂ · 5.5H ₂ O Ho(I H_)(I H_) · 5.5H ₂ O	П ³⁺ СС ³⁺	× ۲	M, 3B 2M 2B	00	2.221(4) 2.299(6)	2.398(4) 2.601(6)	2.306 2.429	Independent polyhedron Polyhedra associated 2 hy	[16]
2		5	þ	1	þ	10/00	(0) 00.7	041-14	2 by shared summit	[17]
16	$Cu_{3}(LH)_{2} \cdot 6H_{2}O$	Cu ²⁺	5	M, B	2	1.917(9)	$1.968(8)^d$ 2.347(8) c	1.948₫ 2.028°	Independent polyhedron	[18.24]
		Cu ²⁺	9	2Т	0	1.947(8)	$1.990(8)^{d}$ 2.45(8) ^c	1.969 ^d 2.129 ^c	Independent polyhedron	
17	$K_4Na_2Cu(L)_2 \cdot 12H_2O$	K(1) ⁺ K(2) ⁺	ထပ	M, B, Q M	م –	2.706 2.682	3.156 2.962	2.926 2.766	All the polyhedra are joined: Na to K(1) by shared face	
		Na ⁺	ഹ	M, B 2T	0 0	2.290 1 944/3/d	2.418 1 970/2)∉	2.346 1 957d	Na to K(2) by shared edge	
		5	þ	17	þ		2.667(3)°	2.194°	Cu to 4K(1) by shared edge	[19]
Louise L										

Hydroxybisphosphonic Function in Crystallized Acids, Metallic Salts, and Some Related Compounds 85

È
ŝ
ğ
ťar
ist
en
Уg
õ
Ļ
<u>9</u>
,ai
0
ag
era
Ą
ð
an
Ð
Ĕ
tre
ш
÷
<u>vi</u>
ġ
S U
ne
īġ
Ō
ŏ
U
atic
ő
S:
Xe
le
Ĕ
റ്റ
ð
an
ŝ
<u>id</u>
Ă
ő
ate
on
ų,
lsc
Ч
isp
ß
sno
Ŀ.
٧a
J.
the
Ö
<u>.</u> .
12
щ
В
Ā

No.	Compound	Cation (M)	Cation coord.	Nature and Number of the Ligand- Cation Bondsª	Numb. of coordinated H ₂ O	M—O (min)	M–O (max)	M–O average (all bonds)	Description of the Polyhedra Chaining	Ref
21	(NH ₄) ₅ Mo ₆ O ₁₇ (LH) ₂ · 10H ₂ O	Mo(1) ⁶⁺	9	F	0	1.696(9) 1.700(8)	2.346(7) 2.337(6)	1.991 1.991	Monodimensional chain:	
		Mo(2) ⁶⁺	Q	В	0	1.708(9) 1.699(0)	2.310(7) 2.299(6)	1.980 1.974	Shared face	
		Mo(3) ^{6 +}	9	В	0	1.699(9)	2.259(7)	1.963	Shared summit Shared summit between 2	
		$N(1)H_4^+$	5	M, B _{Mo}	7	2.74(2)	3.07(2)	2.90	Complex chaining:	
		$N(2)H_4^+$	4	B, M_{Mo}	-	2.79(1)	2.98(1)	2.91	coordination polyhedra or	
		$N(3)H_4^+$	4	B, M _{Mo}	.	2.74(1)	2.89(1)	2.83	associated Mo coordination polyhedra	
		${ m N(4)H_4^+} m N(5)H_4^+$	4 เว	M, B 3M _{Mo}	- 0	2.83(1) 2.84(2)	3.10(1) 3.02(1)	2.97 2.90	polyhedra 2.87	
"	C H32 9 (H I/ H I/ OSM (HN)	N(6)H ⁺ MO6 +	4 U	3M ₀₀	C	2.82(1) 1.681(4)	2.92(1) 2.253(4)	1 965	Independent polyhedron	106
4		N(1)H ⁺ N(2)H ⁺	04 ư	0 4 ¢	000	2.825(5)	2.897(6) 2.897(6) 2.021(8)	2.866 2.866	Linked by shared summits	77
		N(3)H ⁴	04	3M	1 ←	2.826(7)	3.017(7)	2.914		
23	Na₄(NH₄)MoO₂(H)(L)₂ · 15H₂O	Na(1) + Na(2) +	റ വ	В	വറ	2.372(7) 2.393(7)	2.502(6) 2.49(1)	2.413 2.434	Independent polyhedron Chaining by shared edge and	[2]
		NH ₄	4	2B 2B	0	2.780(7)	2.871(7)	2.826	shared summit Independent polyhedron	
00		Mo ⁶⁺	9 9		Ţ	1.958(5)	2.187(6)	2000		, c , c
30 23	znl(เพн ₃)(UH ₂) ₃ (LH)] ² · zH ₂ O Cd[(NH ₃)(CH ₂) ₃ (LH)] · H ₂ O	Cd2+ Cd2+	٥٥	M, 26 M, B, T	- 0	2.186(7)	2.485(7) 2.485(7)	2.299	Independent polynearon Independent bioctahedron	1.01 [31,32
39	$Cu_2[(NH_3(CH_2)_3(LH_2)_2]_4 \cdot 4H_2O$	Cu^{2+}	9	M, 2B	~	1.936(6) ^b	$2.051(5)^{b}$	1.992	by snared edge Independent polyhedron	[37,36
40	Cu,,,[(NH ₃ (CH ₃),(LH ₃),]·2H ₃ O	Cu ²⁺	9	2B	7	$2.295(7)^{\circ}$ 1.963(6) ^b	$2.393(7)^{c}$ 1.982(6) ^b	2.334° 1.973 ^b	Independent octahedron	[37,36
41		C11 ^{2 +}	9	2R	~	2.397(7)° 1.960(4) ^b	2.397(7)° 1.996(5) ^b	2.397°	Independent octahedron	. 60
F		5	þ	2	4		$2.443(6)^{\circ}$	2.133°		<u>5</u>
4 4 3 4 2	[H ₂ N(CH ₂ CH ₃) ₂] ₂ Co(LH ₂) ₂ ·2H ₂ O [H ₃ N(CH ₃ CH ₃) ₃] ₃ Mq(LH ₃) ₃ ·2H ₅ O	Co^{2+} Mq^{2+}	ပ ပ	2B 2B	20	2.064(4) 2.050(1)	2.179(2) 2.152(1)	2.108 2.085	Independent octahedron Independent octahedron	00 140 130
44 75	[H ₂ N(CH ₂ CH ₃)] ₂ Zn(LH ₂) ₂ ·2H ₂ O	Zn ²⁺	94	2B B	0 +	2.056(1)	2.200(2)	2.111 1.040b	Independent octahedron	4 <u>7</u>
,		-00	n	(2N)	-	$1.999(2)^{d}$	1.344(∠) 2.006(2) ^d 2.258(2) ^e	⊎40 2.003₫ 2.029€	nuependent terragonar basis pyramid	
46	NaCu(LH ₂)Cl·3H ₂ O	Na.+	Ŋ	2B (1Cl)	0	2.348(3)	2.592(4) 2.782(2) ^f	2.437 2.506′	Chains of alternately NaO ₅ and CuO ₆ polyhedra linked together by shared edues	4
		Cu ²⁺	9	2B (2CI)	0	$1.959(3)^{b}$ 2.694(1) g	$2.006(2)^{b}$ 2.894(1) ^g	1.984 ^b 2.794 ^g		

Estimated standard deviations in parentheses. $L = [(H_3C)(OH)C(PO_3)_{2}^{14-1}$. M: monodentate bond; B: bidentate bond; T: tridentate bond, (the number of each follows the symbol). 6 These values concern the other distances Cu-O and the corresponding average. 6 These values concern the distances Cu-O and the corresponding average. 6 These values concern the distances Cu-M and their average. 6 These values concern the distances Cu-M and their average. 6 These values concern the distances Cu-N and their average. 6 These values concern the distances Cu-O(H₂) and the average calculated for all the five coordinence bonds. These values concern the distance Cu-O(H₂) and the average calculated for all the five coordinence bonds. 6 These values concern the distances Cu-Cl and the average calculated for all the five coordinence bonds.

Bis HEBP (DHHTP and DHOTP) Complexes: Cation Coordinence with Extreme and Average Cation-Oxygen Distances (Å) **TABLE 13**

				Nature and	M. indan					
No.	Compound ^a	Cation (M)	coordinence of the Cation	the Ligand- Cation Bond ^b	Number of Coordinated H ₂ O	M—O Min	M–O Max	M–O Average	Description of the Polyhedra Chaining	Ref.
47	(H ₃ O) ₂ [DHHTP] · 2H ₂ O	+ H ³ O	ω	3M, 2B	-	2.909(4)	3.355(4)	3.029	Independent bipolyhedron with 4	
48	Na ₂ [DHHTP] · 4H ₂ O	2Na +	9	2M, T	4	2.289(3)	2.884(3)	2.451	shared oxygen atoms Independent bioctahedron with 2	[42]
49	K,[DHHTP] · 2H,O	2K ⁺	ω	3M. 2B	.	2.814(2)	3.202(2)	2.953	shared oxygen atoms Independent bipolyhedron with 4	[43]
20		C11 ² +	Ű	, 2В	~	1 943(5)	1 952(5)	1 948	shared oxygen atoms	[42]
52	CalDHOTPI-6.8H.O	Ca^{2+}) (C	2T	1 0	2.270(4)	2.437(6) 2.350(5)	2.111	Independent octahedron	[44] [31]
53	Cu ₂ [DHOTP] · 12H ₂ O	Cu ²⁺	2	M, B	5 0	$1.933(5)^{*}$	1.990*	1.954*	Independent square base pyramid	2
							2.291	2.021		[31]
⊡ c+i	ated standard deviations in r	o and the co								

Estimated standard deviations in parentheses ^aDHHTP, 1,6-dihydroxyhexylidene-1,1,6,6-tetraphosphonate;DHOTP, 1,8-dihydroxyoctilidene-1,1,8,8-tetraphosphonate. ^bM, monodentate bond; B, bidentate bond; T, tridentate bond. The number of each follows the symbol. ^cThese values concern the other distances Cu-O and the corresponding average.

REFERENCES

- [1] Uchtman, V. A.; Gloss, R. A. J Phys Chem 1972, 76(9), 1298.
- [2] Silvestre, J.-P.; Heger, G.; Cousson, A.; Nguyen Quy Dao, unpublished results, 1992.
- [3] Rochdaoui, R.; Silvestre, J.-P.; Nguyen Quy Dao; Lee, M.-R.; Neuman, A. Acta Cryst 1990, C46, 2083.
- [4] Shkol'nikova, L. M.; Masyuk, A. A.; Afonin, E. G. Koord Khimija 1990, 16(7), 902.
- [5] Barnett, B. L.; Strickland, L. C. Acta Cryst 1979, B35, 1212.
- [6] Shkol'nikova, L. M.; Masyuk, A. A.; Polyanchuk, G. V.; Krinitskaia, L. V.; Afonin, E. G.; Petchurova, N. I.; Diatlova, N. M. Koord Khimija 1989, 15(4), 486.
- [7] Charpin, P.; Lance, M.; Nierlich, M.; Vigner, D.; Lee, M.-R.; Silvestre, J.-P.; Nguyen Quy Dao Acta Cryst 1988, C44, 990.
- [8] Shkol'nikova, L. M.; Masyuk, A. A.; Afonin, E. G.; Diatlova, N. M. Koord Khimija 1989, 15(6), 747.
- [9] Silvestre, J.-P.; Bkouche-Waksman, I.; Heger, G.; Nguyen Quy Dao New J Chem 1990, 14, 29.
- [10] Uchtman, V. A. J Phys Chem 1972, 76(9), 1304.
- [11] Rochdaoui, R.; Silvestre, J.-P.; Nguyen Quy Dao; Lee, M.-R.; Neuman, A. Acta Cryst 1992, C48, 2132.
- [12] El Messbahi, N.; Silvestre, J.-P.; Nguyen Quy Dao; Lee, M.-R.; Leroux, Y.; Neuman, A.; Gillier-Pandraud, H. Phosphorus Sulfur Silicon 2000, 164, 45.
- [13] Silvestre, J.-P.; El Messbahi, N.; Rochdaoui, R.; Nguyen Quy Dao; Lee, M.-R.; Neuman, A. Acta Cryst 1990, C46, 986.
- [14] Silvestre, J.-P.; Nguyen Quy Dao; Leroux, Y.; Wozniak, M.; Pareau, D. PIRSEM-CNRS report, 1986, Vol. 3, pp. 279–286.
- [15] Martello, P.; Görlier-Walrand, C.; Silvestre, J.-P.; Rochdaoui, R.; Lee, M.-R.; Nguyen Quy Dao Inorg Chem 2000, in press.
- [16] Shkol'nikova, L. M.; Masyuk, A. A.; Polyanchuk, G. V.; Krinitskaia, L. V.; Afonin, E. G.; Poznyak, A. L.; Zavodnik, V. E. Koord Khimija 1989, 15, 1424.
- [17] Lee, M.-R.; Silvestre, J.-P.; Nguyen Quy Dao. In 2nd International Conference on f-Elements, Helsinki, Finland, 1994, Book of Abstracts; Kansikas, J., Leskelä, M., Eds; University of Helsinki: Helsinki, Finland, 1994; p. 258.
- [18] Neuman, A.; Safsaf, A.; Gillier, H.; Leroux, Y.; El Manouni, D. Phosphorus Sulfur Silicon 1992, 70, 273.
- [19] Zuohua, P.; Xianlin, J.; Meicheng, S.; Ruifang, Z.; Yongzhuang, X. Chem J Chinese Universities 1985, 6(1), 69.
- [20] Jansens, M. Licentiaatsverhandeling report, Katholieke Universiteit Leuven, Belgie and Ecole Centrale Paris, France, 1993.
- [21] Silvestre, J.-P.; Nguyen Quy Dao, unpublished work, 2000.
- [22] El Messbahi, N. Ph.D. Thesis, University of Paris VI, France, 1992.
- [23] Rochdaoui, R. Ph.D. Thesis, Ecole Centrale Paris, France, 1991.
- [24] Safsaf, A. Ph.D. Thesis, University of Paris Nord (XIII), France, 1989.
- [25] Krol', I. A.; Starikova, Z. A.; Sergienko, V. S.; Tolkatcheva, E. O. Zh Neorg Khim 1990, 35(11), 2817.
- [26] Tolkatcheva, E. O.; Popov, K. I.; Krol', I. A.; Starikova,
 Z. A.; Diatlova, N. M. Zh Neorg Khim 1990, 35(9),
 2265.

- [27] Krol', I. A.; Tolkatcheva, E. O.; Starikova, Z. A.; Popov, K. I. Koord Khim 1990, 16(12), 1621.
- [28] Shkol'nikova, L. M.; Sotman, S. S.; Afonin, E. G. Kristallografiya 1990, 35(6), 1442.
- [29] Ohanessian, J.; Avenel, D.; El Manouni, D.; Benramdane, M. Phosphorus Sulfur Silicon 1997, 129, 99.
- [30] Coiro, V. M.; Lamba, D. Acta Cryst 1989, C45, 446.
- [31] Coindet-Benramdane, M. Ph.D. Thesis, University of Paris Nord (XIII), France, 1996.
- [32] Dufau, C.; Benramdane, M.; Leroux, Y.; El Manouni, D.; Neuman, A.; Prangé, T.; Silvestre, J.-P.; Gillier, H. Phosphorus Sulfur Silicon 1995, 107, 145.
- [33] Leroux, Y.; El Manouni, D.; Safsaf, A.; Neuman, A.; Gillier, H. Phosphorus Sulfur Silicon 1991, 63, 181.
- [34] Leroux, Y.; El Manouni, D.; Safsaf, A.; Neuman, A.; Gillier, H.; Burgada, R. Phosphorus Sulfur Silicon 1991, 56, 95.
- [35] Benech, J. M.; Coindet-Benramdane, M.; Leroux, Y. Z für Kristallog New Crystal Structures 1997, 212, 499.
- [36] Benech, J. M. Ph.D. Thesis, University of Paris Nord (XIII), France, 1996.
- [37] Abkhar, Z.Ph.D. Thesis, University of Paris Nord (XIII), France, 1991.
- [38] Leroux, Y.; Neuman, A.; Gillier, H.; El Manouni, D.; Abkhar, Z.; Prangé, T. Supramol Chem 1994, 5, 267.
- [39] Sergienko, V. S.; Aleksandrov, G. G.; Afonin, E. G. Zh Neorg Khim 1997, 42(8), 1291.
- [40] Sergienko, V. S.; Afonin, E. G.; Aleksandrov, G. G. Zh Neorg Khim 1998, 43(6), 1002.
- [41] Aleksandrov, G. G.; Sergienko, V. S.; Afonin, E. G. Zh Neorg Khim 1997, 42(8), 1287.
- [42] Silvestre, J.-P.; Khadraoui, H.; Gillier, H.; El Manouni, D.; Leroux, Y.; Neuman, A.; Prangé, T.; Nguyen Quy Dao Phosphorus Sulfur Silicon 2000, in press.
- [43] Khadraoui, H.; Gillier, H.; El Manouni, D.; Leroux, Y.; Neuman, A.; Prangé, T.; Silvestre, J.-P.; Nguyen Quy Dao Phosphorus Sulfur Silicon 1997, 127, 67.
- [44] Khadraoui, H.; El Manouni, D.; Leroux, Y.; Neuman, A.; Gillier, H.; Prangé, T.; Silvestre, J.-P.; Nguyen Quy Dao, Phosphorus Sulfur Silicon 1996, 114, 161.
- [45] Afonin, E. G.; Aleksandrov, G. G.; Sergienko, V. S. Russian J Coord Chem 1999, 25(12), 863.
- [46] Sergienko, V. S.; Aleksandrov, G. G.; Afonin, E. G. Russian J Coord Chem 1999, 25(6), 423.
- [47] Sergienko, V. S.; Aleksandrov, G. G.; Afonin, E. G. Russian J Coord Chem 1999, 25(5), 301.
- [48] Aleksandrov, G. G.; Sergienko, V. S.; Afonin, E. G. Russian J Coord Chem 1999, 25(2), 105.
- [49] Sergienko, V. S.; Afonin, E. G.; Aleksandrov, G. G. Russian J Coord Chem 1999, 25(2), 123.
- [50] Leroux, Y.; Silvestre, J.-P.; Wozniak, M. French Patent, FR 2 669 348-B1, 1990.
- [51] Blanquet, P.; Ricalens, F.; Silvestre, J.-P. Proceedings of the 14th Journées des Actinides, Davos, Switzerland, 1984, J. Schoenes, Ed.; ETH Zürich, Switzerland, 1984, pp. 120–125.
- [52] King, W. R.; Francis, M. D.; Michael, W. R. Clinical Orthopedies and Related Research 1971, 78, 251.
- [53] Fleish, H. Drugs 1991, 42, 919.
- [54] Ebetino, F.; Bayless, A. V.; Amburgey, J.; Ibbotson, K. J.; Dansereau, S. M.; Ebrahimpour, A.; Proceedings of the XIIIth International Conference on Phosphorus Chemistry, Jerusalem, Israel, July 16–21, 1995, Phosphorus Sulfur Silicon 1996, 217, 109–110.
- [55] Golomb, G.; Van Gelder, J. M.; Alferiev, I. S.; Ornoy,

A.; Hoffman, A.; Schlossman, A.; Friedman-Ezra, A.; El-Hamany-Rozen, N.; Chen, R.; Solomon, V.; Cohen, H.; Rabinovich, L.; Breuer, E. Proceedings of the XIIIth International Conference on Phosphorus Chemistry, Jerusalem, Israel, July 16–21, 1995, Phosphorus Sulfur Silicon 1996, 109–110, 221.

[56] Ollig, J.; Morbach, M.; Hagele, G.; Breuer, E.; Kellner,

K. Proceedings of the XIIIth International Conference on Phosphorus Chemistry, Jerusalem, Israel, July 16–21, 1995, Phosphorus Sulfur Silicon 1996, 111, 55.

[57] Balena, R.; Toolan, B. C.; Shea, M.; Markatos, A.; Meyers, E. R.; Lee, S. C.; Opas, E. E.; Seedor, J. G.; Klein, H. J Clin Invest 1993, 92(6), 2577.